RFID (Radio Frequency Identification) system is a wireless system without any kinds of mechanical or optical connection between identifying and detected objects. It consists of two basic devices: a reader and tag. Recently with the development of the technology, SAW-RFID (Surface Acoustic Wave Radio Frequency Identification) tags come into market with acceptable price, as well as its size tends to miniaturization.
We propose to use 3D wireless indoor localization system to detect the position of the tags. The reader converts radio waves returned from the SAW-RFID tag into a form, which can be useful to process the information. The system consists of SAW-RFID tags placed on the object and several RF Readers in the room.
The readers sequentially transmit the impulse signals which are then reflected from different tags and received by readers. Then a signal round-trip TOA (Time of Arrival) between tags and readers can be estimated. We define a 3D coordinate system of the readers and calculate the positions of the tags using suitable specific algorithm.
Our system is design to monitor a human body position. The goal is to detect a tumble of solitary living people. A case when the tag positions are identified to be below a per-set threshold means that something happened, and maybe a man has fallen on the ground.
This emergency situation can be detected by the monitoring system which then sends information to an alarm system which can call the health centre to take care of the patient. In this paper, a 5 m×5 m×3 m indoor localization system is implemented in Matlab. The simulation results show a correct identification of a fallen man and accuracy of the high measurement below 30 cm.
Source: Blekinge Institute of Technology
Authors: Ge, Quany | Chai, Yi
>> Matlab Projects Fingerprint Recognition and Face detection for Final Year Students
>> More Matlab Mini Projects for Final Year Students
>> More Wireless Mini Projects for Final Year Students